Fall 2019 MATH3060 Mathematical Analysis III Selected Solution to the Mid-Term Examination

Answer all five questions.

- 1. (25 points) Find the Fourier series of the function f(x) = |x| (extended as a 2π -periodic function). Discuss its convergence.
- 2. (15 points) Let f be a continuous function on $(-\infty, \infty)$ which vanishes outside [-1, 1]. Define the function $\Phi(x, y)$ by

$$\Phi(x,y) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} f(t) dt , \quad \forall (x,y), \ y > 0 .$$

Show that

$$\lim_{y \to 0^+} \Phi(x, y) = f(x) \; .$$

Solution. Using the formula

$$\int_0^\infty \frac{1}{1+z^2} \, dz = \frac{\pi}{2} \; ,$$

one shows that

$$\frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} \, dt = 1$$

It follows that

$$\Phi(x,y) - f(x) = \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{y}{(x-t)^2 + y^2} (f(t) - f(x)) dt .$$

For a fixed x, by the continuity of f, for $\varepsilon > 0$, there is some δ_0 such that $|f(t) - f(x)| < \varepsilon/2$ for all $t, |t - x| < \delta_0$. Therefore,

$$\left|\frac{1}{\pi} \int_{x-\delta_0}^{x+\delta_0} \frac{y}{(x-t)^2 + y^2} (f(t) - f(x)) \, dt\right| \le \frac{\varepsilon}{2} \, . \tag{1}$$

On the other hand, for $t \in (-\infty, x - \delta_0] \cup [x + \delta_0, \infty)$ we have $(x - t)^2 \ge \delta_0^2$. Letting $M = \sup |f|$, we have

$$\begin{aligned} \left| \frac{1}{\pi} \int_{x+\delta_0}^{\infty} \frac{y}{(x-t)^2 + y^2} (f(t) - f(x)) \, dt \right| &\leq \frac{2My}{\pi} \int_{x+\delta_0}^{\infty} \frac{1}{(x-t)^2 + y^2} \, dt \\ &\leq \frac{2My}{\pi} \int_{x+\delta_0}^{\infty} \frac{1}{(x-t)^2} \, dt \\ &= \frac{2My}{\pi} \int_{\delta_0}^{\infty} \frac{1}{z^2} \, dz \\ &= \frac{2M}{\pi \delta_0} \, y \; . \end{aligned}$$

Similarly, we have

$$\left|\frac{1}{\pi} \int_{-\infty}^{x-\delta_0} \frac{y}{(x-t)^2 + y^2} (f(t) - f(x)) \, dt\right| \le \frac{2M}{\pi \delta_0} y \, .$$

Now, taking $\delta < \frac{\pi \delta_0}{8M}$, then

$$\frac{1}{\pi} \left(\int_{-\infty}^{x-\delta_0} + \int_{x+\delta_0}^{\infty} \right) \frac{y}{(x-t)^2 + y^2} (f(t) - f(x)) dt \bigg| < \frac{\varepsilon}{2} , \qquad (2)$$

for all $y, 0 < y < \delta$. The desired result follows from combining (1) and (2). Note. Similar ideas were used in the proof of Theorem 1.5 in Chapter 1 as well as Problem 5 in Assignment 3.

- 3. Let $\sum_{-\infty}^{\infty} c_n e^{inx}$ be the Fourier series of the real-valued function f over $[-\pi, \pi]$.
 - (a) (10 points) For an integrable function f on $[-\pi, \pi]$, show that

$$2\pi \sum_{-\infty}^{\infty} |c_n|^2 \le \int_{-\pi}^{\pi} |f|^2 \; .$$

(b) (10 points) Show that the equality sign in (a) holds when f is a continuous 2π -periodic function which is piecewise C^1 .

Solution. (b) In view of (a) it suffices to show the inequality from the other direction holds. Since the given function is 2π -periodic, continuous, and piecewise C^1 , its Fourier series converges uniformly to itself. Given $\varepsilon > 0$, there is some N such that

$$|f(x) - \sum_{k=-N}^{N} c_k e^{ikx}| < \varepsilon ,$$

for all $x\in [-\pi,\pi]$. We have

$$0 \leq \int_{-\pi}^{\pi} f^{2}(x) dx - 2\pi \sum_{k=-N}^{N} |c_{k}|^{2}$$

=
$$\int_{-\pi}^{\pi} (f(x) - \sum_{-N}^{N} c_{k} e^{ikx}) \overline{(f(x) - \sum_{-N}^{N} c_{k} e^{ikx})} dx$$

$$\leq 2\pi \varepsilon^{2} .$$

Therefore,

$$\int_{-\pi}^{\pi} f^2(x) dx \leq 2\pi \sum_{-N}^{N} |c_k|^2 + 2\pi \varepsilon^2$$
$$\leq 2\pi \sum_{-\infty}^{\infty} |c_k|^2 + 2\pi \varepsilon^2 .$$

The desired result comes by letting $\varepsilon \to 0$.

Note. The key point is the uniform convergence of the Fourier series to the function itself.

4. (a) (10 points) Show that the set $\{f \in C[a, b] : f(x) > 0, \forall x \in [a, b]\}$ is an open set under the supnorm.

(b) (10 points) Consider P, the set of all polynomials restricted on [a, b]. Determine the closure and the interior of P in C[a, b] under the supnorm.

Solution. (b) The closure of P is C[a, b]. For, by Weierstrass Approximation Theorem, for any $f \in C[a, b]$, given $\varepsilon > 0$, there is a polynomial p such that $||f - p||_{\infty} < \varepsilon$. On the other hand, P has empty interior. For, consider the ball $B_r(p)$ where p is a polynomial and r is any positive number, the function $f = p + \varepsilon e^x$, $\varepsilon > 0$, which is not a polynomial, would belong to $B_r(p)$ for all sufficiently small ε .

- 5. (a) (10 points) Let E be a non-empty set in the metric space (X, d). Show that the function $d_E(x) = \inf\{d(x, y) : y \in E\}$ is continuous in (X, d).
 - (b) (10 points) Take X to be \mathbb{R}^n under the Euclidean metric. Show that the only sets which are open and closed are the empty set and \mathbb{R}^n itself. Suggestion: Let E be a non-empty, open and closed set which is not \mathbb{R}^n , and draw a contradiction by considering d_E .

Solution. (b) Let E be a closed and open proper, non-empty subset of \mathbb{R}^n . We will draw a contradiction assuming such set exists. First of all, pick a point lying outside E and consider the function $d_E(x_0)$, the distance from x_0 to E. Since $\mathbb{R}^n \setminus E$ is open, $d_E(x_0) > 0$. On the other hand, let $\{x_n\} \subset E, |x_n - x_0| \to d_E(x_0)$ as $n \to \infty$. From $|x_n| \leq |x_0| + d_E(x_0)$ we see that $\{x_n\}$ is a bounded sequence, so it contains a convergent subsequence. By passing to a subsequence, we may assume $x_n \to z$ as $n \to \infty$. Then $d_E(x_0) = \lim_{n\to\infty} |x_n - x_0| = |x_0 - z|$, that is, z realizing the distance from x_0 to E. As E is closed $z \in E$. As E is open, we can find a ball $B_r(z) \subset E$ for some small r > 0. It is now clear that we can find some point $w \in B_r(z)$ such that $|w-x_0| < |z-x_0| = d_E(x_0)$, contradicting the definition of z. (Note that in the last step, one may take $x_0 = (0, 0, \dots, 0)$ and $z = (a, 0, \dots, 0), a > 0$.